Part one: Introduction and logics
In our
enlightened society, we tend to look down on those that blindly follow
religious doctrines. We accuse them of being ignorant and close-minded, not
questioning unreasonable claims by their authorities, and when challenged,
resorting to rhetoric or aggression rather than logic to defend their views.
Perhaps
phrased a bit extremely, this is the essence of the attitudes of most ‘civilised’
societies that are based on scientific knowledge. Science encourages critical
thinking about the world, and gains knowledge by performing experiments that
help us figure out how the world works. Religion, they say, only makes up facts
that happened in the past to explain things in our everyday lives. That is more
or less the way they tend to think.
But…are
those who follow science really that different? Take a moment to think about
the last time you actually thought critically about what you read in a science
magazine.
It does not
take much intellectual process to question a fact or opinion. ‘I think this is
wrong, because of A’, where A is fact you have learnt that
contradicts that claim. This is not what I would call critical thinking,
something our modern society values highly, yet tends to misuse so often it is
almost frightening.
Critical
thinking is more
about questioning the essence or nature of a statement or piece
of knowledge. Thinking critically is not to question a claim with another claim
that contradicts it and saying that one of them is wrong – that is just
pointless argument. When thinking critically, you challenge the claim per se
(lat. ‘in itself’), by assessing its fundamental reasoning. An example of
critical thinking is detecting fallacies – specific cases of flawed
logical reasoning – such as circular reasoning and false dilemma,
both which are surprisingly common in science. (Fallacies will be discussed
more in detail later.)
Having this
in mind, ask yourself again: when did you last think critically about a scientific
statement?
Would you
then agree with me that, in general, we only rarely – if ever – do this?
Hopefully, this should shock you, not only because you have realised that we
then are not much different from the blindly religious people we denounce as ‘ignorant’
or even ‘brainwashed’, but also since you understand and appreciate the
importance of critical thinking and realise what we are lacking.
If we want
to justify our trust in science, we need to be able to convince ourselves (and
eventually others) of why scientific knowledge is ‘better’ than, say, religious
beliefs. To do that, we need to look at the essence and nature of science, and
compare it with the essence and nature of other ways of obtaining knowledge,
e.g. religion.
This is not
an easy task, and it should not surprise you why so few are even able to
go through with it, since not many are familiar with how scientists reason
(ideally). We all know that they perform experiments and observe
results. Some of us further are aware that the scientist interpret the results
of the experiments within a theoretical framework, use it to generalise
about similar situations, and so add to our collective knowledge. Moreover,
some know of the importance of replicability (that the experiments
should be repeatable), and probably fewer have heard about falsificationism (that
ideas are confirmed not by trying to support them, but by trying to destroy
them and not succeeding).
But how does
all of this really help us understand the world? Why do we need to perform
experiments? Why do we want to generalise? And why should the experiments be
replicable? Why does failing to disprove something make it more reliable than
if you can show that it is true? How do all these things interrelate and
connect to form a comprehensive whole? In short, what are the theoretical
reasons for why science is a good method for making sense of the physical
world?
That is what
this post series will be all about: assessing the scientific method, by
bringing to light how it works, and thinking a lot about what makes it good and
what problems it faces. In other words, we will critically think about the
strengths and weaknesses of the scientific method.
Note that I am not intending to criticise science, but to make us think critically about it, or evaluate it. There is a difference in purpose, which is really important that
you do not misunderstand. I am not going to say that science is wrong, only that it is not as right as many people think it is.
Indeed, it may very well seem as I am pointing more toward its flaws and
limitations, but that is mostly because that is the part the general public is
less familiar with, I believe. I will of course also emphasise the really good
aspects of science.
Honestly,
considering all that science has achieved, most indisputably shown in its
practical applications, it is clear that blindly arguing that science is all
bad and wrong is just silly. All I wish to achieve is to encourage you to think
for yourself about the way you see science, and whether that view is properly
justified, or whether you might need to think again.
In order do
this, we first need a solid introduction to the essentials of reasoning and
logic, and a detailed walk-through of the scientific method. This will include
a whole bunch of new words and definitions that you are probably unfamiliar
with, but please bear in mind that understanding these fundamental concepts is
key to understanding the rest, so I strongly urge you not to skip this part. In
coming posts, I will go through each main step in the chain of the idealised
scientific reasoning, analysing them in detail in the light of what we will
have learned earlier. I will also address other central concepts of science,
such as models, operationalisation, paradigms, the ‘data first vs. theory
first’ discussion, and also the role of mathematics.
Logics – the
structure of an argument
Perhaps in
contrary to what most people think about logics, it is all actually about the structure
of the arguments, and the purpose of this structure is to preserve
truth when reasoning beyond what is already known. In logics, we
want to be able to build on what we know in a way that we can be certain
that what comes out of it is as true as the things we base it on. I will soon
show you why, but first you might wonder why logic would be useful.
What I said
above is basically that ‘logical’ is not the same as ‘true’. ‘Logical’ means
that it follows a format in which the conclusion (the output of a chain of
reasoning) is as true as the arguments you base it on (the input). If you start
with true statements and reason logically, you will end up with true
statements. If you start with some true and some false statements, logical
reasoning will not result in statements you can rely on to be true.
Why, then,
should we bother about logic? It does not seem that helpful if we cannot get
anything out of it that is truer than what we already have. One could thus see
logic as redundant, since it cannot take us any closer to the truth, since it
does not ‘improve’ truths.
I would
agree that this is a limitation in some cases, but it all depends on how you use logic. What we ideally want
to do with logical (and scientific) reasoning is to extrapolate knowledge. To extrapolate is basically to take something you know or expect to be true in one
case and apply the same knowledge to a related but different case, so that you
can learn more about that second case without needing to observe it directly. (With
more formal wording, I would define extrapolate as: extending an application of
a method or conclusion to a related or similar situation, assuming it is
applicable there as well.) You want to be able to pick out the essence of
something, and use that essence to say something more about similar things.
I happen to like bananas, pineapples and
mangos very much. These are all fruits from the tropics. They have that feature
in common (their geographic origin, and also climate). Therefore, I can conclude
that I probably like all or most tropical fruits. I would like to be able to
tell whether I will like coconuts, without trying them first. Coconuts are also
tropical fruits. I can then extrapolate my earlier conclusion to this other
tropical fruit, and say with some confidence that I will probably like
coconuts. This is an extrapolation.
This type of dummy-proof phrasing is mostly
to give you a taste of what is to come when we dive deeper into logics, but I
promise I will not be as obnoxiously explicit most of the time – only when I
really want to be crystal clear.
Anyhow, hopefully you now understand what
extrapolation means. It is a critical concept in the philosophy of knowledge,
and, actually, we do this nearly all the
time without thinking about it. It is instinct – an intuitive way of reasoning – because it is incredibly useful.
Without applying our knowledge to other areas, we would be stuck with only
knowing what we can see with our own eyes and hear with our own ears. (In a later post, we will come to the potential dangers
of that as well.) Extrapolation allows us to break free from the chains
of our limited self and explore other worlds we only have hunches about.
When you are about to cross the street, you
assume the approaching car will stop, because other cars have in the past. When
your friend offers you a new sweet he or she thinks you might like, you accept
it because you like usually like sweets, and because you usually like what he
or she offers you.
When NASA is searching for life on other
planets, it is looking for signs based on what we believe allows us to live on our planet (atmosphere, dynamic planet
interior, water, carbon, etc.). When biochemists test new drugs on lab rats,
they assume the results in the rats will be similar to the consequences of
giving it to a human. Geologists are currently trying to work out whether east
Africa is about to split off from the rest of the continent, based on what clues
they have about such events in the past and what they observe today and
interpret as indicators of a continent splitting.
Extrapolations can be made in many other
areas as well, e.g. social sciences, and others where it is less obvious, such
as mathematics and art. If you are a keen mathematician or artist, take a
moment to think about when and for what purpose you use extrapolation in your work.
I hope you now begin to understand the
importance of logic as well. If you think about it, none of these examples are
more certain than the facts we base them on. I am actually not as fond of fresh
coconut as I am of the other tropical fruits; the hasty conclusion that I might
like all tropical fruits was evidently not true. I strongly doubt that every car you have met when crossing a
street has stopped for you; therefore, you cannot be absolutely certain that
the next driver will stop – the extrapolated statement that the next car
probably will stop before you becomes uncertain because it is based on every
car so far having stopped, which is not quite the case. I can bet that your
friend occasionally gives you something you surprisingly happen not to like,
and you have surely come across some sweet that just was not your thing.
If you understand the importance of
extrapolating knowledge, and thus the importance of logical reasoning, we can
start to look at the structure of logic.
The most basic way of structuring an
argument – basic in the sense that it is simple and clear, and therefore easily
brings out its essence – is making it into a syllogism. Syllogisms consist of two (or more) so-called premises and one conclusion that follows necessarily
– i.e. logically – from the premises. Let me give you a classic example:
P: All bachelors are unmarried men
P: Peter is a bachelor
C: Therefore, Peter is an unmarried man
I let the Ps
indicate premises and the C indicate the conclusion; it is not necessary, but I
want to avoid confusion.
So, that’s a syllogism!
It is that simple! Just to make sure you get the hang of it, try to restructure
this into a syllogism: Because John was late for class, and all latecomers must
be punished, he will sit in detention for an hour after school.
P:
P:
C:
I made it a bit
tricky for you, but, in fairness, few arguments you hear will be laid out so
plainly that you can make a syllogism by just copying and pasting the words. A key to good reasoning is to almost instinctively think in terms of syllogisms
– whenever you hear an argument, rearrange it in your head – and you will start
to notice how many times per day you hear incomplete reasoning all around you. That is one of the strengths of this
format: it is so easy to spot gaps in arguments.
Take a simple
example: ‘Fossils are remains of past life, so evolution must have occurred in
the past.’ For a start, you cannot make a syllogism with only one premise – not
without it becoming silly or redundant. You need to add at least one more
premise, preferably one that fills the jump between fossils and evolution –
i.e. shows the connection. If we add that ‘fossils are more or less different
from now-living organisms’, it starts to make more sense. Or does it? We have
still not quite touched upon the subject of evolution yet. ‘Evolution is
organisms changing over time’ could be just what we need. Shall we try it out?
P: Fossils are remains of past life
P: Fossils are more or less different from
now-living organisms
P: Evolution is organisms changing over
time
C: So, evolution must have occurred in the
past
Although the
wording does not quite fit neatly, the line of reasoning now emerges as more or
less complete. It needs some more polishing, but it makes more sense now that
some large holes have been filled.
Now that you are
more familiar with the layout of syllogisms, I can introduce the concepts of
validity and soundness.
In logics, a valid argument is one where the
conclusion follows necessarily from the premises. For an argument to be
valid, its conclusion must be an indisputable and inevitable consequence of the
premises. Note that validity and truth are
not the same: arguments can be valid without being true. I will show you
how very soon.
A sound argument is one that is valid
and with true premises. If the premises are true, and the conclusion is
a necessary consequence of them, the argument is sound. Soundness can be
thought of as roughly synonymous with
truth.
To really show the
difference, I think it is best if we consider some (pretty fun) examples.
The validity of an argument is all about structure: we want a water-proof
chain of thoughts, and focus on that only. The truth or falseness of the
premises is dealt with later – it is not of our concern at this stage. We only
want to make sure that the reasoning is correct.
A perfectly valid
syllogism could therefore be:
P: All bings are bongs
P: Ding is a bing
C: Therefore, ding is also a bong
Here is another
example of validity, which I took from a handout for a philosophy class:
P: All ostriches are teachers
P: Richard is an ostrich
C: Therefore, Richard is a teacher
Albeit utterly
nonsensical, both are valid. There is no sensible way of questioning the logic
in these statements, regardless of how absurd they sound. If you have trouble
seeing why, try exchanging the words for symbols or letters. I like to use
uppercase letters in italics, but you can choose any of your preference; there
is no rule for that.
P: All As
are B
P: C
is an A
C: Therefore, C is also a B
This is, so to
speak, a general formula for a valid syllogism. There are many other general
forms of valid statements, but this is the standard. Try exchanging A for ‘bird(s)’, B for ‘dinosaur(s)’ and C
for ‘(a) chicken’.
With the above
example, we are moving toward a sound
syllogism, i.e. one where the premises are regarded as true. Validity is a requirement for soundness, and so is that
the premises are true. The latter can be much more difficult to show, so we should not be hasty to call an argument
sound only because we believe the
premises to be true – a dangerously common pitfall – we must be absolutely certain, and there are few
ways to achieve that.
One type of
premises that are indisputably true are those that are true by definition. Look
back at the first example, the one about bachelors being unmarried men: if a
person is not a man or not unmarried, then he/she simply is not a bachelor. Thus, all bachelors are unmarried men, because
if they are not, then they cannot be appropriately called bachelors.
What a silly thing
to be arguing about, right? Where does that lead us? All it does is divide the
world into bachelors and non-bachelors, and allows us to say something about
all bachelors – that they are men and unmarried – and something about all
non-bachelors – they are either not men, married, or both cases. Sounds daft.
Or? We will return to this in some later post,
because it opens up to a quite intriguing discussion, but it is not my purpose
to drag you into it here and now.
A second way a
premise can be regarded as true is if it is the conclusion of a previous sound
syllogism. How come? Consider this generalised example:
Syllogism 1
P: All As
are Bs
P: C
is a B
C: Therefore, C is also a B
Syllogism 2
P: C
is a B
P: All Bs
are D
C: Therefore, C is also D
If you regard
Syllogism 1 as sound, it means you must accept its conclusion to be true. If
that conclusion is used as a premise in the next syllogism, that premise must
be regarded true, as it is the conclusion of a sound argument. If the remaining
premise also is true, then the valid Syllogism 2 is sound, and its conclusion
must be regarded as true as well – and can be used as a premise for more
syllogisms, if you so wish.
Anyhow, I hope you
begin to realise that syllogisms really are quite simple, as long as you have
grasped the essence. But, what is the
point of this? Why this structure? Why do we want valid arguments? Why do
we want sound arguments?
Please take a
moment to reflect on those questions yourself before reading on. I want you to
get into the habit of thinking for yourself about the meaning and importance of
the things you hear.
I hope you reached
some interesting conclusions, and, for the better, that they were different
from mine. That way, you might gain double insight into the purpose and
usefulness of syllogisms.
One purpose of the
particular layout of syllogisms is to put it plainly and simply, so that anyone
and everyone can understand it and see the logic (or lack thereof) easily. In
short, it is all about clarity. In
addition, it can be thought of as a way of systematically approaching
intellectual problems.
Validity is, in
essence, equal to ‘logic’, in the sense that it is a means of preserving the truth. (Remember my first
statement in this section?) If you start with true premises and reason validly,
you will end up with truth (note that this is then a sound argument). If you
start with false or not entirely true premises and reason validly, you are
unlikely to reach a true conclusion, though it may be possible in theory:
P: All potatoes are presidents of the US
P: Obama is a potato
C: Therefore, Obama is a president of the
US
If you start with
truth and reason invalidly, then you
have no clue of what you end up with. For all we know, you can start with false
premises, reason invalidly, and – by sheer luck! – reach a true conclusion.
However, you cannot be certain about its truth, since you cannot show logically
how you came to it. Even though it may be true, if you cannot show it
logically, you may have a hard time convincing others. (See the next syllogism
example below.)
The one thing you can
be absolutely certain about is that you can never
ever start with true premises, reason
validly and end up with a false conclusion. If your conclusion is
false, then either the premises cannot all be true, or the argument cannot be
valid. This is so because of the definitions
of validity and soundness: they are defined so that, when combined as I have
shown you, truth is a necessary and inevitable result; the key issue is showing
that an argument is valid and that the premises are true – i.e. the task is to show that your argument is sound, because, once you have, it must be accepted as true. That is
all you need to do, but it is easier said than done!
Take these lessons with care! Beware not to misuse what you have now learned. Although showing
the validity of a statement is relatively easy, showing its soundness – i.e.
the unquestionable truth of its premises – can be nearly impossible in many
many many cases. Falsely describing an argument as sound, perhaps just because
you agree with the conclusion, is a pitfall we have all fallen into, and
probably will many times over again. We should all take caution not to announce
something as sound unless we can be absolutely sure!
It is also easy to
be fooled into thinking that an invalid argument is valid. Think about this
one, taken from another handout on logics:
P: Vegetarians do not eat pork sausages
P: Ghandi did not eat pork sausages
C: Therefore, Ghandi was a vegetarian
The both premises and the conclusion are all true, but the
argument is actually invalid! You might see this more clearly if you try it
with symbols:
P: All As
are not Bs
P: C
is not a B
C: Therefore, C is an A
It only happens to
be, that, in this case, C is one of
the non-Bs that also are As, but since not all non-Bs are As, the conclusion cannot be regarded as
a necessary consequence of the
premises. Since the argument is not valid, it is not sound either.
Does that make it less true? No, not at all, but it makes
it less convincing to critics. We
have no guarantee that the conclusive statement is true (let us disregard the
fact that the second premise can be questioned and focus on the problem of
invalidity now), since we cannot show that it is a necessary consequence of the
premises. The conclusion is questionable, even though the premises are not.
Detecting
invalidity is not an easy task for a beginner. You need to drill yourself in
the art, and the best way to begin is to start breaking everything down into
syllogisms, and exchanging the key words for symbols if required. Eventually,
it might become second nature to you, and you can ‘feel’ gaps in arguments more
and more easily.
However, there are
some common types of invalid reasoning called fallacies. These are, so to speak, pre-described logical pitfalls.
They are distinct special cases of invalid reasoning, but strikingly common. I
will give you some examples here.
Post hoc ergo
propter hoc is Latin for ‘after this, therefore
on account of this’, and refers to when you assume that that because B
follows from A, then A is the cause of B, or, in other words, assume that correlation means causation.
This reasoning can
be stated as a syllogism:
P: Whenever A occurs, B follows
P: Whenever B occurs, so has A
C: Therefore, A is the cause of B
Why this is
invalid might not be obvious straight away, because it looks structurally
correct. However, you must note that occurrence and cause do not have a two-way connection. Since occurrence
and cause are not invariably connected, the conclusion does not follow
necessarily from the premises; thus, the argument is invalid.
If A causes B, they will naturally occur together or after one another; however,
looking at it from the other end, just because A and B occur in close
association, there is no guarantee that
either causes the other. For example, there
may very well be another factor, C,
which causes both!
A really simple
example, but that one might not think of immediately, is that although night is
followed by day, night is not the cause
of day. (Both are caused by the Earth’s rotation with respect to sunlight
coming from only one direction.)
This is a fallacy
made often in science, and also in other areas of knowledge. However, the scientific method is beautifully capable of
dealing with that issue, which will be shown in a later post, when we explore
the scientific method model in detail. Ideally, if we notice that two
phenomena are correlated, it should give us a hint that it might be worth
investigating whether the connection could be causal or just coincidence; we
must at least be careful not to jump to conclusions!
Equivocation is the use of different meanings of a word in the
same argument. Take this example from a philosophy handout:
P: A hamburger is better than nothing
P: Nothing is better than good health
C: A hamburger is better than good health
The ambiguous use
of the word ‘nothing’ makes the argument nonsensical. Strictly, however, the
syllogism is formally valid, since
the conclusion does follow
necessarily from the premises. This is a very important limitation of logics, because there is no method to deal
with this. Discussing such reasoning will almost always boil down to arguing about the meaning of the words, as so many
arguments tend to do.
This problem is
probably not more or less common in science than in any other area of
knowledge; ambiguity is an inherent problem in language, introduced by our
desire for variation in ways of describing things. The aesthetics of language
has thrust a wedge through an aspect of logics.
Ad hominem means ‘against the man’, and is the fallacy of attacking or supporting the person instead of the argument.
Clearly, the invalidity is a result of completely missing the point. Instead of
examining the statement per se, you
accept or refute it because you like or dislike the person that made the claim.
It may very well
be that this person you like and agree with is
right, but only in the same way that invalid reasoning could result in a
true conclusion: by sheer luck. There
is a possibility that the person is correct, but it is not guaranteed. Thus, it
is a type of fallacy.
In science and history, this problem is
more familiar under the term bias,
which is favouring or disfavouring a
view, person or group, usually in an unfair way. Especially keen students
of history should be aware of the importance of carefully assessing the degree
and direction of bias in a source, and constantly taking care to circumvent the
angled view of the writer. In science, the problem
is less pronounced thanks to the principles of replicability and falsification,
which will be explained in detail at a later point.
It is the same
problem when we appeal to what the majority
of the people believe in. Indeed, if most believe in something, there ought to
be a good reason for that belief, or else it would probably not have been so
wide-spread. However, think about times when society considered slavery, racism
and sexism acceptable and even natural. (Note that this case has little
relation to logics: in past times, these horrendous things were the order of
the day because it had been so for long, and the people in power saw no good
reason for change; it is a matter of social norms, far removed from strict
logical reasoning. In the same way, trusting in the opinion of the vast
majority is not logical reasoning, but simply a matter of trust.)
A sort of grey area is when we trust authorities. Especially
in modern times, when our collective knowledge is so vast and deep that a
single individual simply cannot know or try out everything for him-/herself, we
must, in practice, trust authorities
in relevant areas that we have less experience in or knowledge of.
I am sure many of
us are eager to know what gravity is. Really, what is it? What makes a body
attract others just because it is bigger? That just makes no sense in itself. A
good friend tells me there is mathematical proof for it, but when I ask her to
explain it, she cannot even give me the basics. Evidently, she does not
understand the proof well enough to summarise it to someone who has not done
much physics. How can she then claim that there is proof for gravity? Her physics
teacher probably told her so, and maybe even demonstrated it, but the
essentials are too esoteric (i.e. understood only by very few people with
highly specialised knowledge or interest) for her to fully grasp the concept.
Perhaps she was convinced of it when she saw it demonstrated, but did not
assimilate (i.e. take in) the proof, only recognised and accepted it. What
happened here is that she relied on an authority in the relevant area (her
physics teacher) that the concept she did not herself understand, and perhaps
never will, was true. She placed her trust in that those who understand gravity
know what they are doing.
In practice, we have to rely on authorities in many many
cases; since we simply cannot investigate everything ourselves, we have no
choice but to trust others that have spent much of their lives examining the
particular field of knowledge. The best we can do is prioritise: investigate
in-depth only the parts we find most important to ourselves, and be content
with trusting people to do their thing right in other areas.
Is this bad? Not
in all cases! It would be arrogant not to acknowledge that there are plenty of people in the world that can do things better than
yourself. I know how clumsy I am in mathematics, so when my teacher gets a
different result, I naturally accept that I am probably wrong and try again. I
can be equally clumsy in a chemistry laboratory (unless we are handling
dangerous chemicals, in which case I naturally take uttermost care), so when
the ammeter (a device that measures electric current) reads really weird values
from an electrolytic cell (a set-up of various chemicals in a way that their
reactions produce electricity), I instinctively presume something is amiss with
my set-up, not that my odd results disprove the theory of electrolytic cells!
There are many more examples where I would prefer to trust an authority because
I am sure that he/she is a more capable investigator (in the particular area,
or in general).
What makes a good
authority? We do not want to rely on just about anyone; we want to be sure that
the person we place our trust in is worthy of it. This is a rather interesting
question, but its full complexity is not relevant here, so I will give only one
short, intuitive answer: the authority should at least be an expert in the relevant field of knowledge.
Argumentum ad
ignorantiam means ‘argument from ignorance’, or
otherwise phrased as ‘appeal to ignorance’. This is when someone claims something to be true because there
is no evidence to disprove it.
P: There is no evidence that A is false
C: Therefore, A must be true
Clearly, something
is lacking here. We need at least one more premise for the syllogism to be
complete. What if we do like this:
P: A must
be either true or false
P: There is no evidence that A is false
C: Therefore, A must be (or is probably) true
Now it is valid,
but justifying the new premise will be difficult. It may work in some cases,
but experience tells us that very few things are black and white: life is more
of a mixture of shades of grey. In fact, assuming the first premise to be true
without proper reason is another fallacy, which we will consider next.
False dilemma is when you,
without justification, assume that only
two alternatives exist. It is also referred to as binary thinking, or ‘black and white thinking’. Repeating what I
said above, clearly, this is not true in the vast majority of cases.
Sarcastically,
humourist Robert Benchley once said: “There
are two kinds of people in the world: those who divide the world into two kinds
of people, and those who don't”.
As a side comment,
I would like to add that science has put considerable effort to both show that many natural phenomena are
determined by a variety of factors that can interact with one another, and to explore how these function by attempting
to model them, chiefly with the help of mathematics. Although I expect that
there are scientist out there that have tendencies to commit these fallacies,
such errors tend to be checked and corrected by other scientists, so that,
overall, science works in the general direction of increasing the variety of
grey hues we are aware of.
To give an
example, consider the rate of a general chemical reaction. The rate of a
reaction is the speed at which it occurs or is completed, and naturally depends
on the reactiveness of the involved chemicals. However, countless experiments
have clearly established that the rate also depends to a strong degree on the
concentration (i.e. how many particles there are to react, and, really, how
tightly packed they are), temperature (i.e. how much the particles move about
spontaneously in a random direction) and pressure (i.e. collision frequency:
how often two particles meet) of the compounds. If a gas or liquid reacts with a
solid, the size of the solid is also important: one large clump has only a
small surface where the other substance can react (it cannot reach below the
surface until that goes away), while fine powder has many spots where it can
make contact with the fluid. In addition, there are certain substances that
speed up a reaction without being directly involved in it; these are called catalysts. Unless you have a special
case where you have reasons to suspect that one or two of these factors
overshadow all others so that they become negligible (ignorable), you cannot
apply binary thinking to chemical reaction rates.
False analogy is the
fallacy of (falsely) assuming that because two things are
similar in one or more respect they must be similar in another respect.
Normally, you would not assume that without a good reason; otherwise you will not
be taken seriously. I can think of many silly examples, such as: since squids
and knights have mantles, they must both be spineless; some a bit less silly:
rocks and tables are hard, so both should burn well; and some more realistic:
Joseph Stalin and Fidel Castro were both communist leaders that promoted
personal culture, so they must both have been paranoid and conducted mass
purges in their countries.
In general, people
in my experience have been careful with this (so coming up with examples was
actually really hard), perhaps because it is such an easy-to-spot fallacy: you
should not even need to set up a syllogism to notice such invalidity in an
argument.
Still, we can
sometimes be drawn towards such thinking, in particular when we want to extrapolate
information from one situation to another. (Recall the meaning of ’extrapolate’
from the beginning of this section.) It is therefore important to be conscious
of the risk of committing a fallacy when attempting to make extrapolations.
Circular reasoning is the
real pitfall in most rational disciplines. Circular reasoning is the act of assuming the truth of the very thing you
intend to prove. It is also known as a vicious
circle or begging the question.
In syllogism
terms, a circular argument is one where one or more of the premises depend on the
conclusion to be true. Thus, the conclusion can only be true if it is
true, and the reasoning can only be valid if it is valid. The argument does not
show that the conclusion is true. The
only way of breaking the circle is by assuming the truth of the conclusion in
order to justify one of the premises, but that makes the syllogism, which is
designed to demonstrate the truth of the conclusion, utterly redundant since
you already have assumed the conclusion to be correct.
It is difficult to
think of an example of a formal syllogism with circular reasoning, perhaps
because the very structure of a syllogism in some way could be incompatible
with circular arguments (an interesting thought indeed). Colloquial examples
are easier to recognise, but, again, it is tricky to show formally how they are
circular.
An example of a
not-so-formal circular syllogism is:
P: John is a good businessman
P: John has earned a lot of money through
his business
C: Therefore, John must know how to make
good business
So, basically, one
of the things that make John a good businessman is that he is a good
businessman.
It is called circular reasoning because it goes
around and around in its own circle; it leads nowhere. It will not convince
many that John makes good business if someone keep using John is a good businessman as an argument. When they ask why he is a good businessman, he/she
answers: because he makes good money,
and when they ask why is that, he/she
repeats: because he is a good businessman.
Such a
conversation can be incredibly frustrating if the person in question does not
realise his or her argument is circular. Therefore, it would be wise to try to
break it down into components and try to arrange it into something like a
syllogism, to show why the reasoning is circular and thus invalid.
Although they may
appear formally valid, circular arguments are actually not. Their conclusions do not follow from the premises: they are essentially one of their premises,
or at least part of one.
Circular arguments
are common: I know myself to have made quite many. Luckily, they are not hard
to notice – informally or formally. So, as long as you stay attentive to them,
and when faced with one, know how to show that it is invalid, and are prepared
to attempt to reformulate the argument so that it is no longer circular, you should
be just fine.
I have one last
fallacy I wish to point out, but I cannot remember its name. It is not really a
formal fallacy, so its invalidity cannot be clearly shown in a syllogism. It is
when you think you have explained
something by giving it a name. For example, say you ask me how the sun
warms up the Earth, and I reply: “solar radiation”.
This is not a true
logical fallacy, since this type of argument is not always wrong, while logical fallacies are definitely invalid. In
this case, whether the question has been answered depends on the asker’s
understanding of the term ‘solar radiation’: it is all about whether the person
asking the question has enough knowledge on the subject for the explanation to
be sufficient. However, in many cases the explanation might not be good enough,
but the person who confidently says a few fancy words sounds like he knows what
he is talking about, so you accept it rather than look like a fool. Not a good
idea: that person might have just as little a clue of what he is saying as you
do. There is nothing wrong or shameful in asking for a more comprehensive
explanation, especially if it is not your strong subject, so don’t be afraid to
ask!
Next
Now you have been
introduced to the basics of logical reasoning. Hopefully, you understand and
accept that logics aims to produce chains or patterns of reasoning that are
always correct, so that if you start with true statements and reason validly,
the end product will be just as true. However, what I hope more is that you
have asked yourself: ‘well, what does this have to do with science?’ This is a
very appropriate question, because science has a quite different way of
reasoning!
And that is
precisely the point I want to finish this section with: science does not concern
itself with reasoning that is conclusive, that cannot be debated. It can be
said that science only concerns ideas that can be disputed. For example, the
theory of gravity acting on every object on Earth could in theory be disputed if, say, you drop a pen and it does not
fall to the ground. An unlikely event, perhaps, but it means that there are
ways to question the theory of gravity, and that is one of the qualities that
makes the theory scientific: it is testable
(more on that in some later post).
Is this bad, or is it for the better? It means that science is never certain, that scientific ‘facts’ always have the possibility to be incorrect. Bad for science. However, it means that science becomes useful as a method to try to deal with those un-provable ideas, a way to handle the uncertainty, as best we can. Good for humanity.
Is this bad, or is it for the better? It means that science is never certain, that scientific ‘facts’ always have the possibility to be incorrect. Bad for science. However, it means that science becomes useful as a method to try to deal with those un-provable ideas, a way to handle the uncertainty, as best we can. Good for humanity.
Thus, science is
fundamentally rather different from logics. Can they be said to be unrelated?
Both are branches of the philosophy of knowledge, but they deal with different
aspects of the world. But, in many ways, science strives to be based on logical
reasoning. So, in a sense, science uses
logics to answer questions that pure logics cannot! One difference lies in
the start
premises.
While pure logics prefers fundamental premises that are true by definition,
science deals with premises that are mere generalisations.
This will be the
topic of the next section: inductive vs.
deductive reasoning.
No comments:
Post a Comment